Optoelectronic Transitions in Gold Spherical Nanoparticles - A Simulation Study

Authors

  • Amit Kumar Bhaskaracharya College of Applied Sciences, Delhi.

DOI:

https://doi.org/10.12723/mjs.63.5

Keywords:

electric field variations, extinction coefficient, embedded medium dependences, Gold nanoparticles, Material Science, Nano Particles

Abstract

This study examined extinction spectra, electric field intensity, and their variations due to various semiconductor medium, for gold nanoparticles, using Nanosphere Optics Lab Field Simulator which is based on Mie’s theory of scattering by sphere. The peak extinction wavelength and bandwidth are found to get varied with size of the gold nanoparticle, in four different regimes. Asymmetric distributions of electric fields are observed in particles typically larger than 25nm. The significant differences are found in the results due to changes in the embedding medium. The gold nanoparticles' unique tunable electro-optical properties may therefore be useful for medical, health care, industrial catalysts, and other consumer products. The study shows improved results may be obtained in the medium size range i.e. 25-75nm. In addition, the selectivity can be improved linearly as the refractive index of the host material increases.

Author Biography

Amit Kumar, Bhaskaracharya College of Applied Sciences, Delhi.

Department of Electronic Science, Bhaskaracharya College of Applied Sciences, University of Delhi, South West Delhi, Delhi, India.

References

S. S. Salem, A. Fouda, Biol Trace Elem Res 199, 344–370 (2021). https://doi.org/10.1007/s12011-020-02138-3

S. Sreelakshmi, P.K. Vineeth, A. Mohanan, and N.V. Ramesh, Materials Today: Proceedings, 46(8), 3079-3083, (2021). https://doi.org/10.1016/j.matpr.2021.02.585

Z. Huaizhi, N. Yuantao, Gold Bull 34, 24–29 (2001). https://doi.org/10.1007/BF03214805

D. Pal, C. K. Sahu, A. Haldar, J. Adv. Pharma. Tech. & Res. 5(1), 4 (2014). https://doi.org/10.4103/2231-4040.%20126980

T. Patil-Bhole, A. Wele, R. Gudi, K. Thakur, S. Nadkarni, R. Panmand, B. Kale, J. Ayur. Inte. Medi., 12(4), 640–648 (2021). https://doi.org/10.1016/j.jaim.2021.06.017

W. Paul, C. P. Sharma. Int J Ayur. Res. 2(1):14-22 (2011). https://doi.org/10.4103/0974-7788.83183

K. Khoshnevisan, M. Daneshpour, M. Barkhi, M. Gholami, H. Samadian and H. Maleki, J.Drug Targeting, 26(7), 525-532 (2018). https://doi.org/10.1080/1061186X.2017.1387790

D. Aleksa, et al. ACS Nano 14(12) 17597-17605 (2020). https://doi.org/10.1021/acsnano.0c08431

K. V. Pereira, R. Giacomeli, M. G. de Gomes, S. E. Haas, Placenta, 100, 75, (2020). https://doi.org/10.1016/j.placenta.2020.08.005

P. Slepicka, N. S. Kasálková, J. Siegel, Z. Kolská and V. Švorcík, Materials, 13(1), 1, (2020). https://doi.org/10.3390/ma13010001

B. Tejerina, T. Takeshita, L. Ausman and G. C. Schatz, "Nanosphere Optics Lab Field Simulator," Nano hub, 2014. https://doi.org/10.4231/D3FF3M064

E. G. Wrigglesworth, J. H. Johnston. Nanoscale Advances, 3(12), 3530-3536 (2021). https://doi.org/10.1039/D1NA00148E

A. F. Najafabadi, B. Auguié. Materials Advances, 3 (2022). https://doi.org/10.1039/D1MA00869B

A. Kumar, J. Adv. Sci. Res., 12 (ICITNAS), 223-229 (2021).

K. L. Kelly, E. Coronado, L. L. Zhao and G. C. Schatz, J. Phys. Chem. B, 107, 668, (2003). https://doi.org/10.1021/jp026731y

Y. Huang, L. Ma, M. Hou, J. Li, Z. Xie and Z. Zhang, Scientific Reports, 6, 30011 (2016). https://doi.org/10.1038/srep30011

S. Kaushal, S. S. Nanda, S. Samal, and D. Kee Yi, ChemBioChem, 21(5), 576, (2020). https://doi.org/10.1002/cbic.201900566

H. Huang and Leonid V. Zhigilei, J. Phy. Chem. C, 125(24), 13413, (2021). https://doi.org/10.1021/acs.jpcc.1c03146

S. Altowyan, A. M. Mostafa and H. A. Ahmed, Optik, 241, 167217 (2021). https://doi.org/10.1016/j.ijleo.2021.167217

Additional Files

Published

2022-12-06