Published 2022-12-06
Keywords
- Au nanoparticles,
- electric field variations,
- extinction coefficient,
- embedded medium dependeces
Copyright (c) 2022

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Abstract
There has been intense interest in metallic gold nanoparticles as drug-delivery agent and sensors due to recent applications in biomedical field. for the successful development of biomedical sensors based on metallic nanoparticles, electro-optic interactions have to be studied. This study examined extinction sepctra, electric field intensity, and their variations due to various seminconductor medium, for gold nanoparticles, using Nanosphere Optics Lab Field Simulator which is based on Mie's theory of scattering by sphere. The peak extinction wavelength and bandwidth are found to get varied with size of the gold nanoparticle, in four different regimes. Asymmetric distributions of electric fields are observed in particles larger than 25 nm. The significant differences are found in the results due to changes in the embedding medium. The gold nanoparticles' unique tunable elecro-optical properties may therefore be useful for medical, health caer, industrial catalysts, and other consumer products. The sudy shows improved results may be obtained in the medium size range i.e. 25 - 75 nm. In addition, the selectivity can be improved linearly as the refective index of the host material increases.
References
- S. S. Salem, A. Fouda, Biol Trace Elem Res 199, 344–370 (2021). https://doi.org/10.1007/s12011-020-02138-3
- S. Sreelakshmi, P.K. Vineeth, A. Mohanan, and N.V. Ramesh, Materials Today: Proceedings, 46(8), 3079-3083, (2021). https://doi.org/10.1016/j.matpr.2021.02.585
- Z. Huaizhi, N. Yuantao, Gold Bull 34, 24–29 (2001). https://doi.org/10.1007/BF03214805
- D. Pal, C. K. Sahu, A. Haldar, J. Adv. Pharma. Tech. & Res. 5(1), 4 (2014). https://doi.org/10.4103/2231-4040.%20126980
- T. Patil-Bhole, A. Wele, R. Gudi, K. Thakur, S. Nadkarni, R. Panmand, B. Kale, J. Ayur. Inte. Medi., 12(4), 640–648 (2021). https://doi.org/10.1016/j.jaim.2021.06.017
- W. Paul, C. P. Sharma. Int J Ayur. Res. 2(1):14-22 (2011). https://doi.org/10.4103/0974-7788.83183
- K. Khoshnevisan, M. Daneshpour, M. Barkhi, M. Gholami, H. Samadian and H. Maleki, J.Drug Targeting, 26(7), 525-532 (2018). https://doi.org/10.1080/1061186X.2017.1387790
- D. Aleksa, et al. ACS Nano 14(12) 17597-17605 (2020). https://doi.org/10.1021/acsnano.0c08431
- K. V. Pereira, R. Giacomeli, M. G. de Gomes, S. E. Haas, Placenta, 100, 75, (2020). https://doi.org/10.1016/j.placenta.2020.08.005
- P. Slepicka, N. S. Kasálková, J. Siegel, Z. Kolská and V. Švorcík, Materials, 13(1), 1, (2020). https://doi.org/10.3390/ma13010001
- B. Tejerina, T. Takeshita, L. Ausman and G. C. Schatz, "Nanosphere Optics Lab Field Simulator," Nano hub, 2014. https://doi.org/10.4231/D3FF3M064
- E. G. Wrigglesworth, J. H. Johnston. Nanoscale Advances, 3(12), 3530-3536 (2021). https://doi.org/10.1039/D1NA00148E
- A. F. Najafabadi, B. Auguié. Materials Advances, 3 (2022). https://doi.org/10.1039/D1MA00869B
- A. Kumar, J. Adv. Sci. Res., 12 (ICITNAS), 223-229 (2021).
- K. L. Kelly, E. Coronado, L. L. Zhao and G. C. Schatz, J. Phys. Chem. B, 107, 668, (2003). https://doi.org/10.1021/jp026731y
- Y. Huang, L. Ma, M. Hou, J. Li, Z. Xie and Z. Zhang, Scientific Reports, 6, 30011 (2016). https://doi.org/10.1038/srep30011
- S. Kaushal, S. S. Nanda, S. Samal, and D. Kee Yi, ChemBioChem, 21(5), 576, (2020). https://doi.org/10.1002/cbic.201900566
- H. Huang and Leonid V. Zhigilei, J. Phy. Chem. C, 125(24), 13413, (2021). https://doi.org/10.1021/acs.jpcc.1c03146
- S. Altowyan, A. M. Mostafa and H. A. Ahmed, Optik, 241, 167217 (2021). https://doi.org/10.1016/j.ijleo.2021.167217