Vol. 21 No. 4 (2022): Mapana Journal of Sciences
Research Articles

Optoelectronic Transitions in Gold Spherical Nanoparticles - A Simulation Study

Amit Kumar
Department of Electronics, Bhaskaracharya College of Applied Sciences, University of Delhi, South West Delhi, New Delhi, 110075, India

Published 2022-12-06

Keywords

  • Au nanoparticles,
  • electric field variations,
  • extinction coefficient,
  • embedded medium dependeces

Abstract

There has been intense interest in metallic gold nanoparticles as drug-delivery agent and sensors due to recent applications in biomedical field. for the successful development of biomedical sensors based on metallic nanoparticles, electro-optic interactions have to be studied. This study examined extinction sepctra, electric field intensity, and their variations due to various seminconductor medium, for gold nanoparticles, using Nanosphere Optics Lab Field Simulator which is based on Mie's theory of scattering by sphere. The peak extinction wavelength and bandwidth are found to get varied with size of the gold nanoparticle, in four different regimes. Asymmetric distributions of electric fields are observed in particles larger than 25 nm. The significant differences are found in the results due to changes in the embedding medium. The gold nanoparticles' unique tunable elecro-optical properties may therefore be useful for medical, health caer, industrial catalysts, and other consumer products. The sudy shows improved results may be obtained in the medium size range i.e. 25 - 75 nm. In addition, the selectivity can be improved linearly as the refective index of the host material increases. 

References

  1. S. S. Salem, A. Fouda, Biol Trace Elem Res 199, 344–370 (2021). https://doi.org/10.1007/s12011-020-02138-3
  2. S. Sreelakshmi, P.K. Vineeth, A. Mohanan, and N.V. Ramesh, Materials Today: Proceedings, 46(8), 3079-3083, (2021). https://doi.org/10.1016/j.matpr.2021.02.585
  3. Z. Huaizhi, N. Yuantao, Gold Bull 34, 24–29 (2001). https://doi.org/10.1007/BF03214805
  4. D. Pal, C. K. Sahu, A. Haldar, J. Adv. Pharma. Tech. & Res. 5(1), 4 (2014). https://doi.org/10.4103/2231-4040.%20126980
  5. T. Patil-Bhole, A. Wele, R. Gudi, K. Thakur, S. Nadkarni, R. Panmand, B. Kale, J. Ayur. Inte. Medi., 12(4), 640–648 (2021). https://doi.org/10.1016/j.jaim.2021.06.017
  6. W. Paul, C. P. Sharma. Int J Ayur. Res. 2(1):14-22 (2011). https://doi.org/10.4103/0974-7788.83183
  7. K. Khoshnevisan, M. Daneshpour, M. Barkhi, M. Gholami, H. Samadian and H. Maleki, J.Drug Targeting, 26(7), 525-532 (2018). https://doi.org/10.1080/1061186X.2017.1387790
  8. D. Aleksa, et al. ACS Nano 14(12) 17597-17605 (2020). https://doi.org/10.1021/acsnano.0c08431
  9. K. V. Pereira, R. Giacomeli, M. G. de Gomes, S. E. Haas, Placenta, 100, 75, (2020). https://doi.org/10.1016/j.placenta.2020.08.005
  10. P. Slepicka, N. S. Kasálková, J. Siegel, Z. Kolská and V. Švorcík, Materials, 13(1), 1, (2020). https://doi.org/10.3390/ma13010001
  11. B. Tejerina, T. Takeshita, L. Ausman and G. C. Schatz, "Nanosphere Optics Lab Field Simulator," Nano hub, 2014. https://doi.org/10.4231/D3FF3M064
  12. E. G. Wrigglesworth, J. H. Johnston. Nanoscale Advances, 3(12), 3530-3536 (2021). https://doi.org/10.1039/D1NA00148E
  13. A. F. Najafabadi, B. Auguié. Materials Advances, 3 (2022). https://doi.org/10.1039/D1MA00869B
  14. A. Kumar, J. Adv. Sci. Res., 12 (ICITNAS), 223-229 (2021).
  15. K. L. Kelly, E. Coronado, L. L. Zhao and G. C. Schatz, J. Phys. Chem. B, 107, 668, (2003). https://doi.org/10.1021/jp026731y
  16. Y. Huang, L. Ma, M. Hou, J. Li, Z. Xie and Z. Zhang, Scientific Reports, 6, 30011 (2016). https://doi.org/10.1038/srep30011
  17. S. Kaushal, S. S. Nanda, S. Samal, and D. Kee Yi, ChemBioChem, 21(5), 576, (2020). https://doi.org/10.1002/cbic.201900566
  18. H. Huang and Leonid V. Zhigilei, J. Phy. Chem. C, 125(24), 13413, (2021). https://doi.org/10.1021/acs.jpcc.1c03146
  19. S. Altowyan, A. M. Mostafa and H. A. Ahmed, Optik, 241, 167217 (2021). https://doi.org/10.1016/j.ijleo.2021.167217