Vol. 22 No. 3 (2023): Mapana Journal of Sciences
Research Articles

A Study on Effects of Gate Dielectrics in CNT-FET Using Non-Equilibrium Green’s Function Modelling

Amit Kumar
Department of Electronic Science, Bhaskaracharya College of Applied Sciences, University of Delhi, South West Delhi, 110075.India.

Published 2023-12-13

Keywords

  • Wrap around CNTFET,
  • FET toy simulator ,
  • Gate dielectric variation,
  • Quantum capacitance

Abstract

This study examined how gate dielectric materials affect drain current and quantum capacitance in wrap-around CNTFET devices. We examined CNTFET dielectric materials using Nanohub's FET toy simulator using NEGF  (non-equilibrium Green's function) model. We found that gate-dielectric choice affects the drain current, and larger k values produced higher currents despite the same gate and drain voltages. However, the nano-metric device size limits electrons, causing drain current saturation early. Thus, dielectric and operational bias selection must be optimized. For high-k dielectrics, quantum capacitance dropped quickly after peaking. This can be explained by the fact that nano-sized materials have a lower density of energy states.

References

  1. IRDS 2022 update (2022). https://irds.ieee.org/images/files/pdf/2022/2022IRDS_MM.pdf
  2. T. Srimani, G. Hills, M. D. Bishop, M. M. Shulaker, IEEE Transactions on Nanotechnology, 18: 132-138, (2019). https://doi.org/10.1109/TNANO.2018.2888640
  3. R. K. Ratnesh, A. Goel, G. Kaushik, H. Garg, Chandan, M. Singh, B. Prasad, Materials Science in Semiconductor Processing, 134, 106002 (2021). https://doi.org/10.1016/j.mssp.2021.106002
  4. M. Moaiyeri, A. Rahi, F. Sharifi and K. Navi, Journal of Applied Research and Technology, 15(3) (2019). https://doi.org/10.1016/j.jart.2016.12.006
  5. A. Sachdeva, D. Kumar, E. Abbasian, AEU - International Journal of Electronics and Communications, 162, 154565 (2023). https://doi.org/10.1016/j.aeue.2023.154565
  6. M. K. Q. Jooq, F. Behbahani, M. H. Moaiyeri, AEU - International Journal of Electronics and Communications, 136, 153773 (2021). https://doi.org/10.1016/j.aeue.2021.153773
  7. A. Sarkar, S. Maity, P. Chakraborty, S. K. Chakraborty, Sensor Letters, 17(1): 17-24 (2019). https://doi.org/10.1166/sl.2019.4039
  8. A. Sarkar, B. S. Pasuluri, C. Aswini, M. Kundu, Materials Today: Proceedings, 43(6): 3725-3728 (2021). https://doi.org/10.1016/j.matpr.2020.10.984
  9. S. Iijima, Nature, 354: 56-58 (1991). https://doi.org/10.1038/354056a0
  10. J. M. A. Alsharef, R. M. Taha, A. T. Khan, Jurnal Teknologi (Sciences & Engineering), 79(5) (2017). https://doi.org/10.11113/jt.v79.7646
  11. N. Saifuddin, A. Z. Raziah, A. R. Junizah, Journal of Chemistry, 676815 (2013). https://doi.org/10.1155/2013/676815
  12. N. Hamada, S.-i. Sawada, A. Oshiyama, Physical Review Letters, 1579 (1992). https://doi.org/10.1103/PhysRevLett.68.1579
  13. L.-M. Peng, Z. Zhang, S. Wang, Materials Today, 9(14): 433-442 (2017). https://doi.org/10.1016/j.mattod.2014.07.008
  14. Z. Chen, D. Farmer, R. Gordon, P. Avouris, J. Appenzeller, IEEE Electron Device Letters, 29(2): 183-185 (2008). https://doi.org/10.1109/LED.2007.914069
  15. D. B. B. Farmer, R. G. Gordon, Nano Letters, 6(4): 699-703 (2006). https://doi.org/10.1021/nl052453d
  16. G. Fiori, G. Iannaccone, G. Klimeck, IEEE Transactions on Electron Devices, 53(8): 1782-1788 (2006). https://doi.org/10.1109/TED.2006.878018
  17. S. Mohsenifar, M. H. Shahrokhabadi, Microelectronics and Solid State Electronics, 4(1): 12-24, (2015). https://doi.org/10.5923/j.msse.20150401.03