A Novel and Sustainable Method for the Synthesis of 2-chloro-3-[trans-4-(4-chlorophenyl) cyclohexyl]-1,4-naphthoquinone, accomplished by systematic process development studies - Trans-Cl synthesis
Keywords:
2-Chloro-3-[trans-4-(4-chlorophenyl) cyclohexyl]-1, 4-naphthoquinone, 2,3-Dichloro-1, Synthesis, Characterization, Process DevelopmentAbstract
Present work reports a novel and commercially viable method for the synthesis of 2-chloro-3-[trans-4-(4-chlorophenyl) cyclohexyl]-1,4-naphthoquinone 1, a renowned intermediate of Atovaquone (an antimalarial drug). Majority of the prior arts disclose the synthesis of this intermediate from the expensive starting material 2-chloro-1,4-naphthoquinone 2, in relatively low yield. In this regard, it was considered worthwhile to synthesize 1 by a novel route using cheaper starting material 2,3-dichloro-1,4-naphtoquinone 5, in high yield and purity. In the present study, emphasis was given for selecting the reagents and solvents, optimizing the reaction conditions, recovery and reuse of solvents and silver salt. This optimized novel process is cost effective and would generate less effluent.
References
Anderson, J. M., & Kochi, J. K. (1970). Silver (I)-catalyzed oxidative decarboxylation of acids by peroxydisulfate. Role of silver (II). Journal of the American Chemical Society, 92(6), 1651–1659. https://doi.org/10.1021/ja00709a039
Jacobsen, N., & Torssell, K. (1972). Radikalische Alkylierung von Chinonen: Erzeugung von Radikalen in Redoxreaktionen. Justus Liebigs Annalen der Chemie, 763(1), 135–147. https://doi.org/10.1002/jlac.19727630115
Jacobsen, N., Torssell, K., Lien, T., Pilotti, Å., Svensson, S., & Swahn, C.-G. (1973). Synthesis of naturally occurring Quinones. Alkylation with the silver ion-peroxydisulphate-carboxylic acid system. Acta Chemica Scandinavica (Copenhagen, Denmark: 1989), 27, 3211–3216. https://doi.org/10.3891/acta.chem.scand.27-3211
Jacobsen, N. (1977). Free-radical alkylation of quinones: 2-phenoxymethyl-1,4-benzoquinone. Organic Syntheses; an Annual Publication of Satisfactory Methods for the Preparation of Organic Chemicals, 56, 68. https://doi.org/10.15227/orgsyn.056.0068
Hudson, A. T., Pether, M. J., Randall, A. W., Fry, M., Latter, V. S., & Mchardy, N. (1986). ChemInform Abstract: In vitro Activity of 2-Cycloalkyl-3-hydroxy-1,4-naphthoquinones Against Theileria, Eimeria and Plasmodia Species. Chemischer Informationsdienst, 17(52). https://doi.org/10.1002/chin.198652144
Latter, V. S., & Gutteridge, W. E. US Patent 4981874 (1991).
A. T. Hudson, A. T., & Yeates, C. L. EP Patent 445141 (1996).
Gutteridge, W. E., David, B. A. H., Latter, V. S., & Mary, P. US Patent 6291488 (2001).
Williams, D. R., & Clark, M. P. (1998). Synthesis of atovaquone. Tetrahedron Letters, 39(42), 7629–7632. https://doi.org/10.1016/s0040-4039(98)01691-8
Y. Wang, J. Liao, Q. Li and Q. Liu, CN Patent 101265171A (2008).
Kumar, A., Dike, S.Y., Mathur, P., Nellithanath, B. T., Sharma, B., Kore, S. S., & Buchde, V. WO Patent 2009007991A3 (2009).
Commandeur, C., Chalumeau, C., Dessolin, J., & Laguerre, M. (2007). Study of radical decarboxylation toward functionalization of naphthoquinones. European Journal of Organic Chemistry, 2007(18), 3045–3052. https://doi.org/10.1002/ejoc.200700135
Ilangovan, A., Saravanakumar, S., & Malayappasamy, S. (2013). Γ-carbonyl Quinones: Radical strategy for the synthesis of evelynin and its analogues by C–H activation of Quinones using cyclopropanols. Organic Letters, 15(19), 4968–4971. https://doi.org/10.1021/ol402229m
Gutiérrez-Bonet, Á., Remeur, C., Matsui, J. K., & Molander, G. A. (2017). Late-stage C–H alkylation of heterocycles and 1,4-Quinones via oxidative homolysis of 1,4-dihydropyridines. Journal of the American Chemical Society, 139(35), 12251–12258. https://doi.org/10.1021/jacs.7b05899
Sutherland, D. R., Veguillas, M., Oates, C. L., & Lee, A.-L. (2018). Metal-, photocatalyst-, and light-free, late-stage C–H alkylation of heteroarenes and 1,4-Quinones using carboxylic acids. Organic Letters, 20(21), 6863–6867. https://doi.org/10.1021/acs.orglett.8b02988
Fujiwara, Y., Domingo, V., Seiple, I. B., Gianatassio, R., Del Bel, M., & Baran, P. S. (2011). Practical C−H functionalization of Quinones with boronic acids. Journal of the American Chemical Society, 133(10), 3292–3295. https://doi.org/10.1021/ja111152z
Kianmehr, E., Khalkhali, M. R., Rezaeefard, M., Khan, K. M., & Ng, S. W. (2015). Pd-catalyzed dehydrogenative cross-coupling of 1,4-Quinones with N,N′-dialkyluracils. Australian Journal of Chemistry, 68(1), 165. https://doi.org/10.1071/ch14412
Wang, Y., Zhu, S., & Zou, L.-H. (2019). Recent advances in direct functionalization of Quinones: Recent advances in direct functionalization of Quinones. European Journal of Organic Chemistry, 2019(12), 2179–2201. https://doi.org/10.1002/ejoc.201900028
Cotos, L., Donzel, M., Elhabiri, M., & Davioud-Charvet, E. (2020). A mild and versatile Friedel–crafts methodology for the diversity‐oriented synthesis of redox‐active 3‐benzoylmenadiones with tunable redox potentials. Chemistry (Weinheim an Der Bergstrasse, Germany), 26(15), 3314–3325. https://doi.org/10.1002/chem.201904220
Naturale, G., Lamblin, M., Commandeur, C., Felpin, F.-X., & Dessolin, J. (2012). Direct C-H alkylation of naphthoquinones with amino acids through a revisited kochi-Anderson radical decarboxylation: Trends in reactivity and applications. European Journal of Organic Chemistry, 2012(29), 5774–5788. https://doi.org/10.1002/ejoc.201200722
Li, X., Yan, X., Wang, Z., He, X., Dai, Y., Yan, X., Zhao, D., & Xu, X. (2020). Complementary oxidative generation of iminyl radicals from α-imino-oxy acids: Silver-catalyzed C–H cyanoalkylation of heterocycles and Quinones. The Journal of Organic Chemistry, 85(4), 2504–2511. https://doi.org/10.1021/acs.joc.9b03204
Westwood, M. T., Lamb, C. J. C., Sutherland, D. R., & Lee, A.-L. (2019). Metal-, photocatalyst-, and light-free direct C–H acylation and carbamoylation of heterocycles. Organic Letters, 21(17), 7119–7123. https://doi.org/10.1021/acs.orglett.9b02679
Galloway, J. D., Mai, D. N., & Baxter, R. D. (2017). Silver-catalyzed minisci reactions using selectfluor as a mild oxidant. Organic Letters, 19(21), 5772–5775. https://doi.org/10.1021/acs.orglett.7b02706
Galloway, J. D., & Baxter, R. D. (2019). Progress towards metal-free radical alkylations of quinones under mild conditions. Tetrahedron, 75(46), 130665. https://doi.org/10.1016/j.tet.2019.130665
Liu, S., Huang, Y., Qing, F.-L., & Xu, X.-H. (2018). Transition-metal-free decarboxylation of 3,3,3-trifluoro-2,2-dimethylpropanoic acid for the preparation of C(CF3)me2-containing heteroarenes. Organic Letters, 20(17), 5497–5501. https://doi.org/10.1021/acs.orglett.8b02451
Donzel, M., Karabiyikli, D., Cotos, L., Elhabiri, M., & Davioud-Charvet, E. (2021). Direct C−H radical alkylation of 1,4‐Quinones. European Journal of Organic Chemistry, 2021(25), 3622–3633. https://doi.org/10.1002/ejoc.202100452
Sanjay, S. S., Shashikumar, H. S., Shashiprabha, Shridhara, K., Koottungalmadhom, R. R., Veeraswamy, A., Govindaraju, J., Kothapalli, S. R., & Kuppuswamy, N. US Patent 8283499 (2012).
Takacs, L. (2007). The mechanochemical reduction of AgCl with metals: Revisiting an experiment of M. Faraday. Journal of Thermal Analysis and Calorimetry, 90(1), 81–84. https://doi.org/10.1007/s10973-007-8479-8
Rerenc, S., & Gordon, L. History of Analytical Chemistry. (1992).
Murphy, J. A., Ackerman, A. H., & Heeren, J. K. (1991). Recovery of silver from and some uses for waste silver chloride. Journal of Chemical Education, 68(7), 602. https://doi.org/10.1021/ed068p602
Arias, C., Mata, F., & Perez-Benito, J. F. (1990). Kinetics and mechanism of oxidation of iodide ion by the molybdenum (VI) – hydrogen peroxide system. Canadian Journal of Chemistry, 68(9), 1499–1503. https://doi.org/10.1139/v90-230
Bromocyclopropane. (1963). Organic Syntheses; an Annual Publication of Satisfactory Methods for the Preparation of Organic Chemicals, 43, 9. https://doi.org/10.15227/orgsyn.043.0009
Marcotullio, M. C., Epifano, F., & Curini, M. (2005). Recent advances in the use of oxone in organic synthesis. ChemInform, 36(26). https://doi.org/10.1002/chin.200526212
Additional Files
Published
Issue
Section
License
Copyright (c) 2022 Sanjay Sukumar Saralaya, Shashiprabha, Shridhara Kanakamajalu, Kuppuswamy Nagarajan, Kousik Ramaswamy Ranganathan
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.