A Novel and Sustainable Method for the Synthesis of 2-chloro-3-[trans-4-(4-chlorophenyl) cyclohexyl]-1,4-naphthoquinone, accomplished by systematic process development studies - Trans-Cl synthesis

Authors

  • Sanjay Sukumar Saralaya SDM Institute of Technology, Ujire.
  • Shashiprabha SDM College (Autonomous), Ujire.
  • Shridhara Kanakamajalu ArkGen Pharma Private Limited, Bangalore.
  • Kuppuswamy Nagarajan Retired Consultant for Alkem Labs and KOP Research Centre, Bangalore.
  • Koottungalmadhom Ramaswamy Ranganathan Retired Head of R & D, Alkem Labs and KOP Research Centre, Bangalore.

Keywords:

2-Chloro-3-[trans-4-(4-chlorophenyl) cyclohexyl]-1, 4-naphthoquinone, 2,3-Dichloro-1, Synthesis, Characterization, Process Development

Abstract

Present work reports a novel and commercially viable method for the synthesis of 2-chloro-3-[trans-4-(4-chlorophenyl) cyclohexyl]-1,4-naphthoquinone 1, a renowned intermediate of Atovaquone (an antimalarial drug). Majority of the prior arts disclose the synthesis of this intermediate from the expensive starting material 2-chloro-1,4-naphthoquinone 2, in relatively low yield. In this regard, it was considered worthwhile to synthesize 1 by a novel route using cheaper starting material 2,3-dichloro-1,4-naphtoquinone 5, in high yield and purity. In the present study, emphasis was given for selecting the reagents and solvents, optimizing the reaction conditions, recovery and reuse of solvents and silver salt. This optimized novel process is cost effective and would generate less effluent.  

Author Biographies

Sanjay Sukumar Saralaya, SDM Institute of Technology, Ujire.

Department of Chemistry, Sri Dharmasthala Manjunatheshwara Institute of Technology (Affiliated to Visvesvaraya Technological University, Belagavi), Ujire - 574 240, Karnataka, India.

Shashiprabha, SDM College (Autonomous), Ujire.

PG Department of Chemistry, Sri Dharmasthala Manjunatheshwara College (Autonomous), Ujire-574 240, Karnataka, India.

Shridhara Kanakamajalu, ArkGen Pharma Private Limited, Bangalore.

Technical Coordinator, ArkGen Pharma Private Limited, Peenya Industrial Area, Bangalore-560 058, Karnataka, India. 

Kuppuswamy Nagarajan, Retired Consultant for Alkem Labs and KOP Research Centre, Bangalore.

Retired Consultant for Alkem Labs and KOP Research Centre, Bangalore, Karnataka, India.

Koottungalmadhom Ramaswamy Ranganathan, Retired Head of R & D, Alkem Labs and KOP Research Centre, Bangalore.

Retired Head of R & D, Alkem Labs and KOP Research Centre, Bangalore, Karnataka, India.

References

Anderson, J. M., & Kochi, J. K. (1970). Silver (I)-catalyzed oxidative decarboxylation of acids by peroxydisulfate. Role of silver (II). Journal of the American Chemical Society, 92(6), 1651–1659. https://doi.org/10.1021/ja00709a039

Jacobsen, N., & Torssell, K. (1972). Radikalische Alkylierung von Chinonen: Erzeugung von Radikalen in Redoxreaktionen. Justus Liebigs Annalen der Chemie, 763(1), 135–147. https://doi.org/10.1002/jlac.19727630115

Jacobsen, N., Torssell, K., Lien, T., Pilotti, Å., Svensson, S., & Swahn, C.-G. (1973). Synthesis of naturally occurring Quinones. Alkylation with the silver ion-peroxydisulphate-carboxylic acid system. Acta Chemica Scandinavica (Copenhagen, Denmark: 1989), 27, 3211–3216. https://doi.org/10.3891/acta.chem.scand.27-3211

Jacobsen, N. (1977). Free-radical alkylation of quinones: 2-phenoxymethyl-1,4-benzoquinone. Organic Syntheses; an Annual Publication of Satisfactory Methods for the Preparation of Organic Chemicals, 56, 68. https://doi.org/10.15227/orgsyn.056.0068

Hudson, A. T., Pether, M. J., Randall, A. W., Fry, M., Latter, V. S., & Mchardy, N. (1986). ChemInform Abstract: In vitro Activity of 2-Cycloalkyl-3-hydroxy-1,4-naphthoquinones Against Theileria, Eimeria and Plasmodia Species. Chemischer Informationsdienst, 17(52). https://doi.org/10.1002/chin.198652144

Latter, V. S., & Gutteridge, W. E. US Patent 4981874 (1991).

A. T. Hudson, A. T., & Yeates, C. L. EP Patent 445141 (1996).

Gutteridge, W. E., David, B. A. H., Latter, V. S., & Mary, P. US Patent 6291488 (2001).

Williams, D. R., & Clark, M. P. (1998). Synthesis of atovaquone. Tetrahedron Letters, 39(42), 7629–7632. https://doi.org/10.1016/s0040-4039(98)01691-8

Y. Wang, J. Liao, Q. Li and Q. Liu, CN Patent 101265171A (2008).

Kumar, A., Dike, S.Y., Mathur, P., Nellithanath, B. T., Sharma, B., Kore, S. S., & Buchde, V. WO Patent 2009007991A3 (2009).

Commandeur, C., Chalumeau, C., Dessolin, J., & Laguerre, M. (2007). Study of radical decarboxylation toward functionalization of naphthoquinones. European Journal of Organic Chemistry, 2007(18), 3045–3052. https://doi.org/10.1002/ejoc.200700135

Ilangovan, A., Saravanakumar, S., & Malayappasamy, S. (2013). Γ-carbonyl Quinones: Radical strategy for the synthesis of evelynin and its analogues by C–H activation of Quinones using cyclopropanols. Organic Letters, 15(19), 4968–4971. https://doi.org/10.1021/ol402229m

Gutiérrez-Bonet, Á., Remeur, C., Matsui, J. K., & Molander, G. A. (2017). Late-stage C–H alkylation of heterocycles and 1,4-Quinones via oxidative homolysis of 1,4-dihydropyridines. Journal of the American Chemical Society, 139(35), 12251–12258. https://doi.org/10.1021/jacs.7b05899

Sutherland, D. R., Veguillas, M., Oates, C. L., & Lee, A.-L. (2018). Metal-, photocatalyst-, and light-free, late-stage C–H alkylation of heteroarenes and 1,4-Quinones using carboxylic acids. Organic Letters, 20(21), 6863–6867. https://doi.org/10.1021/acs.orglett.8b02988

Fujiwara, Y., Domingo, V., Seiple, I. B., Gianatassio, R., Del Bel, M., & Baran, P. S. (2011). Practical C−H functionalization of Quinones with boronic acids. Journal of the American Chemical Society, 133(10), 3292–3295. https://doi.org/10.1021/ja111152z

Kianmehr, E., Khalkhali, M. R., Rezaeefard, M., Khan, K. M., & Ng, S. W. (2015). Pd-catalyzed dehydrogenative cross-coupling of 1,4-Quinones with N,N′-dialkyluracils. Australian Journal of Chemistry, 68(1), 165. https://doi.org/10.1071/ch14412

Wang, Y., Zhu, S., & Zou, L.-H. (2019). Recent advances in direct functionalization of Quinones: Recent advances in direct functionalization of Quinones. European Journal of Organic Chemistry, 2019(12), 2179–2201. https://doi.org/10.1002/ejoc.201900028

Cotos, L., Donzel, M., Elhabiri, M., & Davioud-Charvet, E. (2020). A mild and versatile Friedel–crafts methodology for the diversity‐oriented synthesis of redox‐active 3‐benzoylmenadiones with tunable redox potentials. Chemistry (Weinheim an Der Bergstrasse, Germany), 26(15), 3314–3325. https://doi.org/10.1002/chem.201904220

Naturale, G., Lamblin, M., Commandeur, C., Felpin, F.-X., & Dessolin, J. (2012). Direct C-H alkylation of naphthoquinones with amino acids through a revisited kochi-Anderson radical decarboxylation: Trends in reactivity and applications. European Journal of Organic Chemistry, 2012(29), 5774–5788. https://doi.org/10.1002/ejoc.201200722

Li, X., Yan, X., Wang, Z., He, X., Dai, Y., Yan, X., Zhao, D., & Xu, X. (2020). Complementary oxidative generation of iminyl radicals from α-imino-oxy acids: Silver-catalyzed C–H cyanoalkylation of heterocycles and Quinones. The Journal of Organic Chemistry, 85(4), 2504–2511. https://doi.org/10.1021/acs.joc.9b03204

Westwood, M. T., Lamb, C. J. C., Sutherland, D. R., & Lee, A.-L. (2019). Metal-, photocatalyst-, and light-free direct C–H acylation and carbamoylation of heterocycles. Organic Letters, 21(17), 7119–7123. https://doi.org/10.1021/acs.orglett.9b02679

Galloway, J. D., Mai, D. N., & Baxter, R. D. (2017). Silver-catalyzed minisci reactions using selectfluor as a mild oxidant. Organic Letters, 19(21), 5772–5775. https://doi.org/10.1021/acs.orglett.7b02706

Galloway, J. D., & Baxter, R. D. (2019). Progress towards metal-free radical alkylations of quinones under mild conditions. Tetrahedron, 75(46), 130665. https://doi.org/10.1016/j.tet.2019.130665

Liu, S., Huang, Y., Qing, F.-L., & Xu, X.-H. (2018). Transition-metal-free decarboxylation of 3,3,3-trifluoro-2,2-dimethylpropanoic acid for the preparation of C(CF3)me2-containing heteroarenes. Organic Letters, 20(17), 5497–5501. https://doi.org/10.1021/acs.orglett.8b02451

Donzel, M., Karabiyikli, D., Cotos, L., Elhabiri, M., & Davioud-Charvet, E. (2021). Direct C−H radical alkylation of 1,4‐Quinones. European Journal of Organic Chemistry, 2021(25), 3622–3633. https://doi.org/10.1002/ejoc.202100452

Sanjay, S. S., Shashikumar, H. S., Shashiprabha, Shridhara, K., Koottungalmadhom, R. R., Veeraswamy, A., Govindaraju, J., Kothapalli, S. R., & Kuppuswamy, N. US Patent 8283499 (2012).

Takacs, L. (2007). The mechanochemical reduction of AgCl with metals: Revisiting an experiment of M. Faraday. Journal of Thermal Analysis and Calorimetry, 90(1), 81–84. https://doi.org/10.1007/s10973-007-8479-8

Rerenc, S., & Gordon, L. History of Analytical Chemistry. (1992).

Murphy, J. A., Ackerman, A. H., & Heeren, J. K. (1991). Recovery of silver from and some uses for waste silver chloride. Journal of Chemical Education, 68(7), 602. https://doi.org/10.1021/ed068p602

Arias, C., Mata, F., & Perez-Benito, J. F. (1990). Kinetics and mechanism of oxidation of iodide ion by the molybdenum (VI) – hydrogen peroxide system. Canadian Journal of Chemistry, 68(9), 1499–1503. https://doi.org/10.1139/v90-230

Bromocyclopropane. (1963). Organic Syntheses; an Annual Publication of Satisfactory Methods for the Preparation of Organic Chemicals, 43, 9. https://doi.org/10.15227/orgsyn.043.0009

Marcotullio, M. C., Epifano, F., & Curini, M. (2005). Recent advances in the use of oxone in organic synthesis. ChemInform, 36(26). https://doi.org/10.1002/chin.200526212

Additional Files

Published

2022-12-06