Synthesis and characterization of some novel sulfonate and carbonate prodrugs of Atovaquone, accomplished with better solubility profile
Published 2024-11-09
Keywords
- Atovaquone,
- Sulfonate prodrugs,
- Carbonate prodrugs,
- Solubility,
- Hydrolysis
- Metabolites ...More
Copyright (c) 2024
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Abstract
Atovaquone is an acclaimed anti-malarial drug with considerably poor water solubility and hence has low bioavailability. To overcome this issue, a few novel prodrugs of Atovaquone were introduced in this work. In line with this, two prodrugs of Atovaquone having sulfonate and carbonate molecular framework extension were disclosed. This work encapsulates the synthesis, characterization, solubility profile and feasibility of hydrolysis of disclosed prodrugs. These prodrugs have shown better water solubility than the parent drug, Atovaquone. Hence, prodrugs of the present invention can contribute to increasing the bioavailability and clinical efficacy of Atovaquone. It is worth perusing further in-vivo studies with these prodrugs to solidify them for routine clinical practices with safe and efficacious drug delivery.
References
- . Hughes, W., Leoung, G., Kramer, F., Bozzette, S. A., Safrin, S., Frame, P., Clumeck, N., Masur, H., Lancaster, D., & Chan, C. (1993). Comparison of atovaquone (566C80) with trimethoprim-sulfamethoxazole to treat Pneumocystis carinii pneumonia in patients with AIDS. The New England Journal of Medicine, 328(21), 1521–1527. https://doi.org/10.1056/NEJM199305273282103
- . Dohn, M. N. (1994). Oral atovaquone compared with intravenous pentamidine for Pneumocystis carinii pneumonia in patients with AIDS. Annals of Internal Medicine, 121(3), 174. https://doi.org/10.7326/0003-4819-121-3-199408010-00003
- . Djurković-Djaković, O., Milenković, V., Nikolić, A., Bobić, B., & Grujić, J. (2002). Efficacy of atovaquone combined with clindamycin against murine infection with a cystogenic (Me49) strain of Toxoplasma gondii. The Journal of Antimicrobial Chemotherapy, 50(6), 981–987. https://doi.org/10.1093/jac/dkf251
- . Färnert, A., Lindberg, J., Gil, P., Swedberg, G., Berqvist, Y., Thapar, M. M., Lindegårdh, N., Berezcky, S., & Björkman, A. (2003). Evidence of Plasmodium falciparum malaria resistant to atovaquone and proguanil hydrochloride: case reports. BMJ (Clinical Research Ed.), 326(7390), 628–629. https://doi.org/10.1136/bmj.326.7390.628
- . Krause, P. J., Lepore, T., Sikand, V. K., Gadbaw, J., Jr, Burke, G., Telford, S. R., 3rd, Brassard, P., Pearl, D., Azlanzadeh, J., Christianson, D., McGrath, D., & Spielman, A. (2000). Atovaquone and azithromycin for the treatment of babesiosis. The New England Journal of Medicine, 343(20), 1454–1458. https://doi.org/10.1056/NEJM200011163432004
- . Raju, M., Salazar, J. C., Leopold, H., & Krause, P. J. (2007). Atovaquone and azithromycin treatment for babesiosis in an infant. The Pediatric Infectious Disease Journal, 26(2), 181–183. https://doi.org/10.1097/01.inf.0000250622.11505.8f
- . Vial, H. J., & Gorenflot, A. (2006). Chemotherapy against babesiosis. Veterinary Parasitology, 138(1–2), 147–160. https://doi.org/10.1016/j.vetpar.2006.01.048
- . Shaji, J., Bhatia, V. (2013). Dissolution enhancement of atovaquone through cyclodextrin complexation and phospholipid solid dispersion. Innovareacademics. In. Retrieved February 14, 2023, from https://innovareacademics.in/journal/ijpps/Vol5Issue3/7072.pdf
- . Nicolaides, E., Galia, E., Efthymiopoulos, C., Dressman, J. B., & Reppas, C. (1999). Forecasting the in vivo performance of four low solubility drugs from their in vitro dissolution data. Pharmaceutical Research, 16(12), 1876–1882. https://doi.org/10.1023/a:1018959511323
- . Darade, A., Pathak, S., Sharma, S., & Patravale, V. (2018). Atovaquone oral bioavailability enhancement using electrospraying technology. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences, 111, 195–204. https://doi.org/10.1016/j.ejps.2017.09.051
- . Serajuddin, A. T. M. (2007). Salt formation to improve drug solubility. ChemInform, 38(52). https://doi.org/10.1002/chin.200752235
- . Machado, P., Ritter, E., dos Santos, A. J. B., Ev Neves, C., Basso, L. A., & Santos, D. S. (2013). Ultrasound-assisted improvement of drug solubility: a simple and useful method for the formation of salts from 4-hydroxy-6-methyl-3-nitropyridin-2(1H)-one. Monatshefte Fur Chemie, 144(8), 1165–1170. https://doi.org/10.1007/s00706-013-0948-0
- . Serajuddin, A. T. M. (2007). Salt formation to improve drug solubility. Advanced Drug Delivery Reviews, 59(7), 603–616. https://doi.org/10.1016/j.addr.2007.05.010
- . Shah, K., Gupta, J. K., Chauhan, N. S., Upmanyu, N., Shrivastava, S. K., & Mishra, P. (2017). Prodrugs of NSAIDs: A review. The Open Medicinal Chemistry Journal, 11(1), 146–195. https://doi.org/10.2174/1874104501711010146
- . Hughes, W. T., Sillos, E. M., LaFon, S., Rogers, M., Woolley, J. L., Davis, C., Studenberg, S., Pattishall, E., Freeze, T., Snyder, G., & Staton, S. (1998). Effects of aerosolized synthetic surfactant, atovaquone, and the combination of these on murine Pneumocystis carinii pneumonia. The Journal of Infectious Diseases, 177(4), 1046–1056. https://doi.org/10.1086/515252
- . Bhalani, D. V., Nutan, B., Kumar, A., & Singh Chandel, A. K. (2022). Bioavailability enhancement techniques for poorly aqueous soluble drugs and therapeutics. Biomedicines, 10(9), 2055. https://doi.org/10.3390/biomedicines10092055
- . Zhu, Y., Ye, J., & Zhang, Q. (2020). Self-emulsifying drug delivery system improve oral bioavailability: Role of excipients and physico-chemical characterization. Pharmaceutical Nanotechnology, 8(4), 290–301. https://doi.org/10.2174/2211738508666200811104240
- . Alam, M. A., Ali, R., Al-Jenoobi, F. I., & Al-Mohizea, A. M. (2019). The effect of carrier matrix and the method of preparing solid dispersion on physical state and solubility of ibuprofen. Drug Delivery Letters, 9(2), 157–165. https://doi.org/10.2174/2210303109666190214153315
- . Sanjay, S. S., Shridhara, K., & Shashiprabha. (2021). A review on atovaquone and buparvaquone prodrugs. World journal of pharmaceutical research, 10 (13), 2108–2119. https://doi.org/10.20959/wjpr202113-22232
- . Karaman, R. (2013). Prodrugs design based on inter- and intramolecular chemical processes. Chemical Biology & Drug Design, 82(6), 643–668. https://doi.org/10.1111/cbdd.12224
- . Comley, J. C., Yeates, C. L., & Frend, T. J. (1995). Antipneumocystis activity of 17C91, a prodrug of atovaquone. Antimicrobial Agents and Chemotherapy, 39(10), 2217–2219. https://doi.org/10.1128/aac.39.10.2217
- . Hudson, A. T., & Yeates, C. L. (1993). 1,4 naphthoquinone derivtives with anti-protozoal and anti-parasitic activity. WO 1993020044 A1. https://patents.google.com/patent/WO1993020044A1/RED_FLAGS_Oct.2007_.pdf
- . El Hage, S., Ane, M., Stigliani, J.-L., Marjorie, M., Vial, H., Baziard-Mouysset, G., & Payard, M. (2009). Synthesis and antimalarial activity of new atovaquone derivatives. European Journal of Medicinal Chemistry, 44(11), 4778–4782. https://doi.org/10.1016/j.ejmech.2009.07.021
- . Karaman, R., & Hallak, H. (2010). Computer-assisted design of pro-drugs for antimalarial atovaquone: CAD of pro-drugs for antimalarial atovaquone. Chemical Biology & Drug Design, 76(4), 350–360. https://doi.org/10.1111/j.1747-0285.2010.01018.x
- . Karaman, R., Fattash, B., Mecca, G., & Bader, M. (2014). Computationally designed atovaquone prodrugs based on Bruice’s enzyme model. Current Computer-Aided Drug Design, 10(1), 15–27. https://doi.org/10.2174/15734099113096660049
- . Karaman, R., Fattash, B., & Karaman, D. (2015). Design, synthesis and in-vitro kinetic study of atovaquone prodrug for the treatment of malaria. World journal of pharmaceutical research, 4 (9), 361–390. https://doi.org/10.20959/wjpr20159-4479
- . Saralya, S. S., Somashekar, S. H., Kanakamajalu, S., Ranganathan, K. R., Ananthalakshmi, V., Jeyaraman, G., Rao, K. S., & Nagarajan, K. (2012). US 8283499 B2. https://patentimages.storage.googleapis.com/bb/96/9b/5b21acb9bfa0b2/US8283499.pdf
- . Saralaya, S. S., Shashiprabha, Kanakamajalu, S., Nagarajan, K., & Ranganathan, K. R. (2022). A Novel and Sustainable Method for the Synthesis of 2-chloro-3-[trans-4-(4-chlorophenyl) cyclohexyl]-1,4-naphthoquinone, accomplished by systematic process development studies - Trans-Cl synthesis. Mapana Journal of Sciences, 21(3). https://journals.christuniversity.in/index.php/mapana/article/view/3437
- . Saralaya, S. S., Shashiprabha, Kanakamajalu, S., Nagarajan, K., & Ranganathan, K. R. (2022). A systematic study towards the synthesis, isolation, and recrystallization of atovaquone, an antimalarial drug: A sustainable synthetic pathway. Mapana Journal of Sciences, 21(1), 19–37. https://doi.org/10.12723/mjs.60.2
- . Saralaya, S. S., Kunjyannaya, A., Kanakamajalu, S., Rao, K. S., & Nagarajan, K. (2015). 3-(5-methyl-2-oxo-l, 3-dioxol-4-yl) methyloxy-2-trans-[(4-chloro phenyl) cyclohexyl] [1, 4] naphthoquinone-Atovaquone prodrug. US 9169232 B2. https://patentimages.storage.googleapis.com/97/0c/94/9cbc6938985bf0/US9169232.pdf
- . Sanjay, S. S., Shashiprabha, Shridhara, K., & Nagarajan, K. (2022). Synthesis, structural elucidation and reaction optimization studies of a novel prodrug of Atovaquone. Journal of Chemical Sciences, 134(1). https://doi.org/10.1007/s12039-022-02029-1
- . Birch, H., Redman, A. D., Letinski, D. J., Lyon, D. Y., & Mayer, P. (2019). Determining the water solubility of difficult-to-test substances: A tutorial review. Analytica Chimica Acta, 1086, 16–28. https://doi.org/10.1016/j.aca.2019.07.034
- . OECD. (1995). Test No. 105: Water Solubility. 1-8. https://doi.org/10.1787/9789264069589-en
- . Elder, D. P., & Snodin, D. J. (2009). Drug substances presented as sulfonic acid salts: overview of utility, safety and regulation. The Journal of Pharmacy and Pharmacology, 61(3), 269–278. https://doi.org/10.1211/jpp.61.03.0001
- . Been-Tiktak, A. M., Vrehen, H. M., Schneider, M. M., van der Feltz, M., Branger, T., Ward, P., Cox, S. R., Harry, J. D., & Borleffs, J. C. (1995). Safety, tolerance, and pharmacokinetics of atevirdine mesylate (U-87201E) in asymptomatic human immunodeficiency virus-infected patients. Antimicrobial Agents and Chemotherapy, 39(3), 602–607. https://doi.org/10.1128/AAC.39.3.602
- . Eder, E., Kütt, W., & Deininger, C. (2001). On the role of alkylating mechanisms, O-alkylation and DNA-repair in genotoxicity and mutagenicity of alkylating methanesulfonates of widely varying structures in bacterial systems. Chemico-Biological Interactions, 137(1), 89–99. https://doi.org/10.1016/s0009-2797(01)00211-3
- . Snodin, D. J. (2006). Residues of genotoxic alkyl mesylates in mesylate salt drug substances: real or imaginary problems? Regulatory Toxicology and Pharmacology: RTP, 45(1), 79–90. https://doi.org/10.1016/j.yrtph.2006.02.003
- . Hanaya, K., Yoshioka, S., Ariyasu, S., Aoki, S., Shoji, M., & Sugai, T. (2016). Development of a novel sulfonate ester-based prodrug strategy. Bioorganic & Medicinal Chemistry Letters, 26(2), 545–550. https://doi.org/10.1016/j.bmcl.2015.11.074
- . Satyam, A. (2011). Prodrugs containing novel bo-cleavable linkers. US Patent 7932294 B2. https://patentimages.storage.googleapis.com/9d/5a/8d/661ad86fdf9a84/US7932294.pdf
- . de Groot, F. M. H., van Berkom, L. W. A., & Scheeren, H. W. (2000). Synthesis and biological evaluation of 2‘-carbamate-linked and 2‘-carbonate-linked prodrugs of paclitaxel: Selective activation by the tumor-associated protease plasmin. Journal of Medicinal Chemistry, 43(16), 3093–3102. https://doi.org/10.1021/jm0009078
- . Ranade, A. S., Bertino, J. R., & Hu, L. (2021). Design, Synthesis, and Evaluation of Potential Carbamate Prodrugs of 5′-methylthioadenosine (MTA). In Research Square. https://doi.org/10.21203/rs.3.rs-272240/v1
- . Matošević, A., & Bosak, A. (2020). Carbamate group as structural motif in drugs: a review of carbamate derivatives used as therapeutic agents. Arhiv Za Higijenu Rada i Toksikologiju, 71(4), 285–299. https://doi.org/10.2478/aiht-2020-71-3466
- . Pessah, N., Reznik, M., Shamis, M., Yantiri, F., Xin, H., Bowdish, K., Shomron, N., Ast, G., & Shabat, D. (2004). Bioactivation of carbamate-based 20(S)-camptothecin prodrugs. Bioorganic & Medicinal Chemistry, 12(8), 1859–1866. https://doi.org/10.1016/j.bmc.2004.01.039