Vol. 23 No. 3 (2024): Mapana Journal of Sciences
Research Articles

Synthesis and characterization of some novel sulfonate and carbonate prodrugs of Atovaquone, accomplished with better solubility profile

Sanjay Sukumar Saralaya
Sri Dharmasthala Manjunatheshwara Institute of Technology, Ujire
Shashiprabha
PG Department of Chemistry, Sri Dharmasthala Manjunatheshwara College (Autonomous), Ujire-574 240, Karnataka, India.
Bio
Shridhara K
Arkgen Pharma Private Limited, Peenya Industrial Area, Bangalore
Bio

Published 2024-11-09

Keywords

  • Atovaquone,
  • Sulfonate prodrugs,
  • Carbonate prodrugs,
  • Solubility,
  • Hydrolysis,
  • Metabolites
  • ...More
    Less

Abstract

Atovaquone  is an acclaimed anti-malarial drug with considerably poor water solubility and hence has low bioavailability. To overcome this issue, a few novel prodrugs of Atovaquone were introduced in this work. In line with this, two prodrugs of Atovaquone having sulfonate and carbonate molecular framework extension were disclosed. This work encapsulates the synthesis, characterization, solubility profile and feasibility of hydrolysis of disclosed prodrugs. These prodrugs have shown better water solubility than the parent drug, Atovaquone. Hence, prodrugs of the present invention can contribute to increasing the bioavailability and clinical efficacy of Atovaquone. It is worth perusing further in-vivo studies with these prodrugs to solidify them for routine clinical practices with safe and efficacious drug delivery.

References

  1. . Hughes, W., Leoung, G., Kramer, F., Bozzette, S. A., Safrin, S., Frame, P., Clumeck, N., Masur, H., Lancaster, D., & Chan, C. (1993). Comparison of atovaquone (566C80) with trimethoprim-sulfamethoxazole to treat Pneumocystis carinii pneumonia in patients with AIDS. The New England Journal of Medicine, 328(21), 1521–1527. https://doi.org/10.1056/NEJM199305273282103
  2. . Dohn, M. N. (1994). Oral atovaquone compared with intravenous pentamidine for Pneumocystis carinii pneumonia in patients with AIDS. Annals of Internal Medicine, 121(3), 174. https://doi.org/10.7326/0003-4819-121-3-199408010-00003
  3. . Djurković-Djaković, O., Milenković, V., Nikolić, A., Bobić, B., & Grujić, J. (2002). Efficacy of atovaquone combined with clindamycin against murine infection with a cystogenic (Me49) strain of Toxoplasma gondii. The Journal of Antimicrobial Chemotherapy, 50(6), 981–987. https://doi.org/10.1093/jac/dkf251
  4. . Färnert, A., Lindberg, J., Gil, P., Swedberg, G., Berqvist, Y., Thapar, M. M., Lindegårdh, N., Berezcky, S., & Björkman, A. (2003). Evidence of Plasmodium falciparum malaria resistant to atovaquone and proguanil hydrochloride: case reports. BMJ (Clinical Research Ed.), 326(7390), 628–629. https://doi.org/10.1136/bmj.326.7390.628
  5. . Krause, P. J., Lepore, T., Sikand, V. K., Gadbaw, J., Jr, Burke, G., Telford, S. R., 3rd, Brassard, P., Pearl, D., Azlanzadeh, J., Christianson, D., McGrath, D., & Spielman, A. (2000). Atovaquone and azithromycin for the treatment of babesiosis. The New England Journal of Medicine, 343(20), 1454–1458. https://doi.org/10.1056/NEJM200011163432004
  6. . Raju, M., Salazar, J. C., Leopold, H., & Krause, P. J. (2007). Atovaquone and azithromycin treatment for babesiosis in an infant. The Pediatric Infectious Disease Journal, 26(2), 181–183. https://doi.org/10.1097/01.inf.0000250622.11505.8f
  7. . Vial, H. J., & Gorenflot, A. (2006). Chemotherapy against babesiosis. Veterinary Parasitology, 138(1–2), 147–160. https://doi.org/10.1016/j.vetpar.2006.01.048
  8. . Shaji, J., Bhatia, V. (2013). Dissolution enhancement of atovaquone through cyclodextrin complexation and phospholipid solid dispersion. Innovareacademics. In. Retrieved February 14, 2023, from https://innovareacademics.in/journal/ijpps/Vol5Issue3/7072.pdf
  9. . Nicolaides, E., Galia, E., Efthymiopoulos, C., Dressman, J. B., & Reppas, C. (1999). Forecasting the in vivo performance of four low solubility drugs from their in vitro dissolution data. Pharmaceutical Research, 16(12), 1876–1882. https://doi.org/10.1023/a:1018959511323
  10. . Darade, A., Pathak, S., Sharma, S., & Patravale, V. (2018). Atovaquone oral bioavailability enhancement using electrospraying technology. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences, 111, 195–204. https://doi.org/10.1016/j.ejps.2017.09.051
  11. . Serajuddin, A. T. M. (2007). Salt formation to improve drug solubility. ChemInform, 38(52). https://doi.org/10.1002/chin.200752235
  12. . Machado, P., Ritter, E., dos Santos, A. J. B., Ev Neves, C., Basso, L. A., & Santos, D. S. (2013). Ultrasound-assisted improvement of drug solubility: a simple and useful method for the formation of salts from 4-hydroxy-6-methyl-3-nitropyridin-2(1H)-one. Monatshefte Fur Chemie, 144(8), 1165–1170. https://doi.org/10.1007/s00706-013-0948-0
  13. . Serajuddin, A. T. M. (2007). Salt formation to improve drug solubility. Advanced Drug Delivery Reviews, 59(7), 603–616. https://doi.org/10.1016/j.addr.2007.05.010
  14. . Shah, K., Gupta, J. K., Chauhan, N. S., Upmanyu, N., Shrivastava, S. K., & Mishra, P. (2017). Prodrugs of NSAIDs: A review. The Open Medicinal Chemistry Journal, 11(1), 146–195. https://doi.org/10.2174/1874104501711010146
  15. . Hughes, W. T., Sillos, E. M., LaFon, S., Rogers, M., Woolley, J. L., Davis, C., Studenberg, S., Pattishall, E., Freeze, T., Snyder, G., & Staton, S. (1998). Effects of aerosolized synthetic surfactant, atovaquone, and the combination of these on murine Pneumocystis carinii pneumonia. The Journal of Infectious Diseases, 177(4), 1046–1056. https://doi.org/10.1086/515252
  16. . Bhalani, D. V., Nutan, B., Kumar, A., & Singh Chandel, A. K. (2022). Bioavailability enhancement techniques for poorly aqueous soluble drugs and therapeutics. Biomedicines, 10(9), 2055. https://doi.org/10.3390/biomedicines10092055
  17. . Zhu, Y., Ye, J., & Zhang, Q. (2020). Self-emulsifying drug delivery system improve oral bioavailability: Role of excipients and physico-chemical characterization. Pharmaceutical Nanotechnology, 8(4), 290–301. https://doi.org/10.2174/2211738508666200811104240
  18. . Alam, M. A., Ali, R., Al-Jenoobi, F. I., & Al-Mohizea, A. M. (2019). The effect of carrier matrix and the method of preparing solid dispersion on physical state and solubility of ibuprofen. Drug Delivery Letters, 9(2), 157–165. https://doi.org/10.2174/2210303109666190214153315
  19. . Sanjay, S. S., Shridhara, K., & Shashiprabha. (2021). A review on atovaquone and buparvaquone prodrugs. World journal of pharmaceutical research, 10 (13), 2108–2119. https://doi.org/10.20959/wjpr202113-22232
  20. . Karaman, R. (2013). Prodrugs design based on inter- and intramolecular chemical processes. Chemical Biology & Drug Design, 82(6), 643–668. https://doi.org/10.1111/cbdd.12224
  21. . Comley, J. C., Yeates, C. L., & Frend, T. J. (1995). Antipneumocystis activity of 17C91, a prodrug of atovaquone. Antimicrobial Agents and Chemotherapy, 39(10), 2217–2219. https://doi.org/10.1128/aac.39.10.2217
  22. . Hudson, A. T., & Yeates, C. L. (1993). 1,4 naphthoquinone derivtives with anti-protozoal and anti-parasitic activity. WO 1993020044 A1. https://patents.google.com/patent/WO1993020044A1/RED_FLAGS_Oct.2007_.pdf
  23. . El Hage, S., Ane, M., Stigliani, J.-L., Marjorie, M., Vial, H., Baziard-Mouysset, G., & Payard, M. (2009). Synthesis and antimalarial activity of new atovaquone derivatives. European Journal of Medicinal Chemistry, 44(11), 4778–4782. https://doi.org/10.1016/j.ejmech.2009.07.021
  24. . Karaman, R., & Hallak, H. (2010). Computer-assisted design of pro-drugs for antimalarial atovaquone: CAD of pro-drugs for antimalarial atovaquone. Chemical Biology & Drug Design, 76(4), 350–360. https://doi.org/10.1111/j.1747-0285.2010.01018.x
  25. . Karaman, R., Fattash, B., Mecca, G., & Bader, M. (2014). Computationally designed atovaquone prodrugs based on Bruice’s enzyme model. Current Computer-Aided Drug Design, 10(1), 15–27. https://doi.org/10.2174/15734099113096660049
  26. . Karaman, R., Fattash, B., & Karaman, D. (2015). Design, synthesis and in-vitro kinetic study of atovaquone prodrug for the treatment of malaria. World journal of pharmaceutical research, 4 (9), 361–390. https://doi.org/10.20959/wjpr20159-4479
  27. . Saralya, S. S., Somashekar, S. H., Kanakamajalu, S., Ranganathan, K. R., Ananthalakshmi, V., Jeyaraman, G., Rao, K. S., & Nagarajan, K. (2012). US 8283499 B2. https://patentimages.storage.googleapis.com/bb/96/9b/5b21acb9bfa0b2/US8283499.pdf
  28. . Saralaya, S. S., Shashiprabha, Kanakamajalu, S., Nagarajan, K., & Ranganathan, K. R. (2022). A Novel and Sustainable Method for the Synthesis of 2-chloro-3-[trans-4-(4-chlorophenyl) cyclohexyl]-1,4-naphthoquinone, accomplished by systematic process development studies - Trans-Cl synthesis. Mapana Journal of Sciences, 21(3). https://journals.christuniversity.in/index.php/mapana/article/view/3437
  29. . Saralaya, S. S., Shashiprabha, Kanakamajalu, S., Nagarajan, K., & Ranganathan, K. R. (2022). A systematic study towards the synthesis, isolation, and recrystallization of atovaquone, an antimalarial drug: A sustainable synthetic pathway. Mapana Journal of Sciences, 21(1), 19–37. https://doi.org/10.12723/mjs.60.2
  30. . Saralaya, S. S., Kunjyannaya, A., Kanakamajalu, S., Rao, K. S., & Nagarajan, K. (2015). 3-(5-methyl-2-oxo-l, 3-dioxol-4-yl) methyloxy-2-trans-[(4-chloro phenyl) cyclohexyl] [1, 4] naphthoquinone-Atovaquone prodrug. US 9169232 B2. https://patentimages.storage.googleapis.com/97/0c/94/9cbc6938985bf0/US9169232.pdf
  31. . Sanjay, S. S., Shashiprabha, Shridhara, K., & Nagarajan, K. (2022). Synthesis, structural elucidation and reaction optimization studies of a novel prodrug of Atovaquone. Journal of Chemical Sciences, 134(1). https://doi.org/10.1007/s12039-022-02029-1
  32. . Birch, H., Redman, A. D., Letinski, D. J., Lyon, D. Y., & Mayer, P. (2019). Determining the water solubility of difficult-to-test substances: A tutorial review. Analytica Chimica Acta, 1086, 16–28. https://doi.org/10.1016/j.aca.2019.07.034
  33. . OECD. (1995). Test No. 105: Water Solubility. 1-8. https://doi.org/10.1787/9789264069589-en
  34. . Elder, D. P., & Snodin, D. J. (2009). Drug substances presented as sulfonic acid salts: overview of utility, safety and regulation. The Journal of Pharmacy and Pharmacology, 61(3), 269–278. https://doi.org/10.1211/jpp.61.03.0001
  35. . Been-Tiktak, A. M., Vrehen, H. M., Schneider, M. M., van der Feltz, M., Branger, T., Ward, P., Cox, S. R., Harry, J. D., & Borleffs, J. C. (1995). Safety, tolerance, and pharmacokinetics of atevirdine mesylate (U-87201E) in asymptomatic human immunodeficiency virus-infected patients. Antimicrobial Agents and Chemotherapy, 39(3), 602–607. https://doi.org/10.1128/AAC.39.3.602
  36. . Eder, E., Kütt, W., & Deininger, C. (2001). On the role of alkylating mechanisms, O-alkylation and DNA-repair in genotoxicity and mutagenicity of alkylating methanesulfonates of widely varying structures in bacterial systems. Chemico-Biological Interactions, 137(1), 89–99. https://doi.org/10.1016/s0009-2797(01)00211-3
  37. . Snodin, D. J. (2006). Residues of genotoxic alkyl mesylates in mesylate salt drug substances: real or imaginary problems? Regulatory Toxicology and Pharmacology: RTP, 45(1), 79–90. https://doi.org/10.1016/j.yrtph.2006.02.003
  38. . Hanaya, K., Yoshioka, S., Ariyasu, S., Aoki, S., Shoji, M., & Sugai, T. (2016). Development of a novel sulfonate ester-based prodrug strategy. Bioorganic & Medicinal Chemistry Letters, 26(2), 545–550. https://doi.org/10.1016/j.bmcl.2015.11.074
  39. . Satyam, A. (2011). Prodrugs containing novel bo-cleavable linkers. US Patent 7932294 B2. https://patentimages.storage.googleapis.com/9d/5a/8d/661ad86fdf9a84/US7932294.pdf
  40. . de Groot, F. M. H., van Berkom, L. W. A., & Scheeren, H. W. (2000). Synthesis and biological evaluation of 2‘-carbamate-linked and 2‘-carbonate-linked prodrugs of paclitaxel: Selective activation by the tumor-associated protease plasmin. Journal of Medicinal Chemistry, 43(16), 3093–3102. https://doi.org/10.1021/jm0009078
  41. . Ranade, A. S., Bertino, J. R., & Hu, L. (2021). Design, Synthesis, and Evaluation of Potential Carbamate Prodrugs of 5′-methylthioadenosine (MTA). In Research Square. https://doi.org/10.21203/rs.3.rs-272240/v1
  42. . Matošević, A., & Bosak, A. (2020). Carbamate group as structural motif in drugs: a review of carbamate derivatives used as therapeutic agents. Arhiv Za Higijenu Rada i Toksikologiju, 71(4), 285–299. https://doi.org/10.2478/aiht-2020-71-3466
  43. . Pessah, N., Reznik, M., Shamis, M., Yantiri, F., Xin, H., Bowdish, K., Shomron, N., Ast, G., & Shabat, D. (2004). Bioactivation of carbamate-based 20(S)-camptothecin prodrugs. Bioorganic & Medicinal Chemistry, 12(8), 1859–1866. https://doi.org/10.1016/j.bmc.2004.01.039