Vol. 21 No. 2 (2022): Mapana Journal of Sciences
Research Articles

Role of Defects in the Band Gap Tailoring of Carbon Black

Elma Elizaba Mathew
CHRIST (Deemed to be University), Bangalore, Karnataka, India
Manoj Balachandran
CHRIST (Deemed to be University), Bangalore, Karnataka, India

Published 2023-01-18

Versions

Keywords

  • Carbon Black,
  • Band-Gap,
  • Defects,
  • Amorphous

Abstract

With the rise in the need for cost-effective production of graphene-like systems, Carbon Black (CB) is found to be a potential candidate. This report presents the structural modification of Carbon Black (CB) subjected to hydrothermal exfoliation at various temperatures. X-ray diffraction (XRD) revealed the graphitic structure with a broad peak, indicating the amorphous nature regardless of the variation in temperatures. Raman spectroscopy revealed that defect intensity increased with the increase in temperature. The band-gaps are found to be 4eV, 2.95eV, 2.86eV and 2.21eV at the exfoliation temperatures 160⁰C,180⁰C,200⁰C and 220⁰C respectively exhibiting a lowering with rise in temperature.   

References

  1. Lee, S. M., Lee, S. H., & Roh, J. S. (2021). Analysis of activation process of carbon black based on structural parameters obtained by XRD analysis. Crystals, 11(2), 153., doi: 10.3390/cryst11020153.
  2. Farida, E., Bukit, N., Ginting, E. M., & Bukit, B. F. (2019). The effect of carbon black composition in natural rubber compound. Case Studies in Thermal Engineering, 16, 100566., doi: 10.1016/j.csite.2019.100566.
  3. Zhang, S., Cui, Y., Wu, B., Song, R., Song, H., Zhou, J., ... & Cao, L. (2014). Control of graphitization degree and defects of carbon blacks through ball-milling. RSC advances, 4(1), 505-509., doi: 10.1039/c3ra44530e.
  4. M. C. F. Soares et al., “Surface modification of carbon black nanoparticles by dodecylamine: Thermal stability and phase transfer in brine medium,” Carbon N Y, vol. 72, pp. 287–295, Jun. 2014, doi: 10.1016/j.carbon.2014.02.008.
  5. “Ungar, T., Gubicza, J., Ribarik, G., Pantea, C., & Zerda, T. W. (2002). Microstructure of carbon blacks determined by X-ray diffraction profile analysis. Carbon, 40(6), 929-937.https://doi.org/10.1016/S0008-6223(01)00224-X
  6. Daud, W. M. A. W., & Houshamnd, A. H. (2010). Textural characteristics, surface chemistry and oxidation of activated carbon. Journal of Natural Gas Chemistry, 19(3), 267-279. doi: 10.1016/S1003-9953(09)60066-9.
  7. Hauptman, N., Vesel, A., Ivanovski, V., & Gunde, M. K. (2012). Electrical conductivity of carbon black pigments. Dyes and Pigments, 95(1), 1-7, doi: 10.1016/j.dyepig.2012.03.012.
  8. Amornwachirabodee, K., Tantimekin, N., Pan-In, P., Palaga, T., Pienpinijtham, P., Pipattanaboon, C., ... & Wanichwecharungruang, S. (2018). Oxidized carbon black: preparation, characterization and application in antibody delivery across cell membrane. Scientific reports, 8(1), 1-11. doi: 10.1038/s41598-018-20650-4.
  9. Hunt, A., Kurmaev, E. Z., & Moewes, A. (2014). Band gap engineering of graphene oxide by chemical modification. Carbon, 75, 366-371. doi: 10.1016/j.carbon.2014.04.015.
  10. Acik, M., & Chabal, Y. J. (2012). A review on reducing graphene oxide for band gap engineering. J. Mater. Sci. Res, 2(1), 5539., doi: 10.5539/jmsr.v2n1p101.
  11. Mathkar, A., Tozier, D., Cox, P., Ong, P., Galande, C., Balakrishnan, K., ... & Ajayan, P. M. (2012). Controlled, stepwise reduction and band gap manipulation of graphene oxide. The journal of physical chemistry letters, 3(8), 986-991., doi: 10.1021/jz300096t.
  12. Mathew, E. E., & Balachandran, M. (2021). Crumpled and porous graphene for supercapacitor applications: A short review. Carbon Letters, 31(4), 537-555. doi: 10.1007/s42823-021-00229-2.
  13. Manoj, B (2014). Characterization of nano-crystalline carbon from camphor and diesel by x-ray diffraction technique. Asian Journal of Chemistry, 26 (15), 4553.
  14. Hummers Jr, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the american chemical society, 80(6), 1339-1339.
  15. Guo, J., Lou, H., Zhao, H., Wang, X., & Zheng, X. (2004). Novel synthesis of high surface area MgAl2O4 spinel as catalyst support. Materials Letters, 58(12-13), 1920-1923. doi: 10.1016/j.matlet.2003.12.013.
  16. Manoj, B.(2012). Chemical demineralization of high volatile Indian bituminous coal by carboxylic acid and characterization of the products by SEM/EDS. Journal of environmental research and development, 6 (3A), 654-58
  17. Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., ... & Geim, A. K. (2006). Raman spectrum of graphene and graphene layers. Physical review letters, 97(18), 187401. doi: 10.1103/PhysRevLett.97.187401.
  18. Mathew, E. E., & Manoj, B. (2021). Disorders in graphene: types, effects and control techniques—a review. Carbon Letters, 1-20. doi: 10.1007/s42823-021-00289-4.
  19. Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R., & Pöschl, U. (2005). Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon, 43(8), 1731-1742., doi: 10.1016/j.carbon.2005.02.018.
  20. “Schaeffer, W. D., Smith, W. R., & Polley, M. H. (1953). Structure and properties of carbon black-changes induced by heat treatment. Industrial & Engineering Chemistry, 45(8), 1721-1725.”.
  21. “Jawhari, T., Roid, A., & Casado, J. (1995). Raman spectroscopic characterization of some commercially available carbon black materials. Carbon, 33(11), 1561-1565.”.https://doi.org/10.1016/0008-6223(95)00117-V