Vol. 25 No. 1 (2026): Mapana Journal of Sciences
Physical Sciences

Comparative studies of photophysical properties of Indole molecules

Vijayalaxmi Mallayya
Gulbarga University Kalaburagi

Published 2026-02-14

Keywords

  • Dipole moment,
  • Indole derivative,
  • Solvatochromatic and Gaussian 16 W

Abstract

              In this study, we present a comparative investigation of 5-methyl-3-phenyl-1H-indole-2-carbohydrazide and 5-chloro-3-phenyl-1H-indole-2-carbohydrazide. The work includes molecular structure determination, UV–visible spectral analysis, and evaluation of 1H and 13C NMR chemical shift values. The influence of pure solvents on the spectral characteristics was analysed using solvatochromic theories. Ground- and excited-state dipole moments were calculated using the solvatochromic method. The higher excited-state dipole moment values and the observed redshifts in the emission spectra confirm that the singlet excited state exhibits intramolecular charge-transfer (ICT) character. Theoretical studies were performed using density functional theory (DFT) at the CAM-B3LYP/6-31+G(d,p) level with Gaussian software. The HOMO and LUMO energies, along with the global chemical reactivity descriptors (GCRD), were evaluated using the DFT/B3LYP/6-311+G(d,p) level of theory. Additionally, molecular electrostatic potential (MEP) maps were constructed to determine the region’s most susceptible to electrophilic and nucleophilic attack. The experimentally measured ground-state dipole moments (1.67 D and 13.1 D) were found to be higher than the corresponding theoretical values (1.11 D and 6.44 D).

 

References

  1. Lakhdar S, Westermaier M, Terrier F, Goumont R, Boubaker T, Ofial AR, Mayr H (2006) Nucleophilic reactivities of indoles. J Org Chem 71:9088–9095
  2. Sharma V, Pradeep K, Devender P (2010) Biological importance of the indole nucleus in recent years: a comprehensive review. J Heterocycl Chem 47:491–502
  3. Kaushik NK, Kaushik N, Attri P, Kumar N, Kim CH, Verma AK, Choi EH (2013) Biomedical Importance of Indoles. Molecules 18:6620–6662
  4. Xue-Hua Zhang, Yan Cui, Ryuzi Katoh, Nagatoshi Koumura and Kohjiro Hara J. Phys. Chem. C 2010, 114, 42, 18283–18290
  5. Mathada.B S, Yernale.N G, Basha J. N, J. Badiger, An insight into the advanced synthetic recipes to access ubiquitous indole heterocycles, Tetrahedron Letters, Volume 85, 2021, 153458, https://doi.org/10.1016/j.tetlet.2021.153458.
  6. Yernale N. G, Mruthyunjayaswamy B. H. M, Metal (II) complexes of ONO donor Schiff base ligand as a new class of bioactive compounds containing indole core: Synthesis and characterization, Int J Pharm Pharm Sci, Vol 8, Issue 1, 197-204 (2016).
  7. Hintz. T, Matthews K. K, Di. R, Biomedical Research Institute, pp.246, 2015.
  8. Reichardt. C, Welton. T, Solvents and solvent effects in organic chemistry, John Wiley & Sons, 2011.
  9. Ravi.M, Soujanya.T, Samanta.A, Radhakrishnan.T. P, Excited-state dipole moments of some Coumarin dyes from a solvatochromic method using the solvent polarity parameter, ENT, J. Chem. Soc., Faraday Trans. 91 (17) (1995) 2739–2742.
  10. Reichardt. C, Solvatochromic dyes as solvent polarity indicators, Chemical reviews 94 (8) (1994) 2319–2358..
  11. Suppan. P, Excited-state dipole moments from absorption/fluorescence solvatochromic ratios, Chem. Phys. Lett. 94 (3) (1983) 272–275, https://doi. org/10.1016/0009-2614(83)87086-9.
  12. Edward. J. T, Molecular volumes and the Stokes-Einstein equation, J. Chem. Educ. 47 (4) (1970) 261, https://doi.org/10.1021/ed047p261
  13. Kumar. N, Paramasivam. M, Kumar. J, Gusain. A, Hota.P. K, Tuning of optical properties of p-phenyl ethenyl-E-furans: a solvatochromism and density functional theory, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 206 (2019) 396–404, https://doi.org/10.1016/j.saa.2018.08.032.
  14. Srinath, Chillargikar, S., Patil, O. et al. Experimental and Theoretical Approach to Estimate Electric Dipole Moments and Analysis of Preferential Solvation, Fluorescence Quenching of 4 NPMB Coumarin Molecule by Steady State Method. J Fluoresc (2025). https://doi.org/10.1007/s10895-025-04331-w.
  15. Srinath, Patil, O., Devar, S. et al. Estimation of Electric Dipole Moment by Solvatochromism, Computational Method, and Study of the Effect of Solvents by Preferential Solvation of 6 – Methoxy—4— (4—Nitro—Phenoxy Methyl)—Chromen—2—One (6mnpm). J Fluoresc 35, 5861–5869 (2025). https://doi.org/10.1007/s10895-024-03955-8
  16. Hanagodimath. S. M, Chikkur. G. C, Gadaginamath. G. S, Environmental effects on the energy migration coefficient, the effective energy transfer and quenching distances in an organic liquid scintillator, Chem. Phys. 148 (2) (1990) 347–357, https://doi.org/10.1016/0301-0104(90)89030-T.
  17. Hanagodimath. S. M, Chikkur. G. C, Gadaginamath. G. S, ‘‘Role of Brownian diffusion and interaction distance on energy transfer and quenching in an organic liquid scintillator, Int. J. Radiat. Appl. Instrument. Part A. Appl. Radiat. Isotopes 41 (9) (1990) 817–821, https://doi.org/10.1016/0883-2889(90) 90058-O
  18. Hanagodimath. S. M, Chikkur. G. C, Gadaginamath. G. S, An unique method of determining the excitation energy migration coefficient in organic liquid scintillators, Pramana – J. Phys. 37 (2) (1991) 153–161, https://doi.org/ 10.1007/BF02875302.
  19. Hanagodimath. S. M, Chikkur. G. C, Gadaginamath. G. S, On the mechanism of excitation energy transfer involving long and short range interaction in dilute organic liquid scintillator systems, Acta Phys. Pol. A 81 (3) (1992) 361–368.
  20. Melavanki. R, T. Muttannavar, S. Vaijayanthimala, N. Patil, L. Naik, J. Kadadevarmath, Solvent effects on the dipole moments and photo physical properties of laser dye, Indian J. Pure Appl. Phys. 56 (2018) 749–754.
  21. Desai. V. R, Hanagodimath.S.M, Basanagouda.M, Kadadevarmath.J.S, Thipperudrappa.J, Sidarai.A.H, Spectroscopic studies on newly synthesized 5- (2-hydroxy-5-methoxy-phenyl)-2-phenyl-2H-pyridazin-3-one molecule, J. Mol. Liq. 225 (2017) 613–620, https://doi.org/10.1016/j.molliq.2016.11.080.
  22. Desai. V. R, Hanagodimath.S.M, Basanagouda.M, Kadadevarmath.J.S, Thipperudrappa.J,Sidarai.A.H, Solvent effects on the electronic absorption and fluorescence spectra of HNP: estimation of ground and excited state dipole moments, J. Fluoresc. 26 (4) (2016) 1391–1400, https://doi.org/10.1007/s10895-016-1830-3.
  23. Siddlingeshwar. B, Hanagodimath.S.M, Kirilova. E. M, Kirilov. G.K, Photophysical characteristics of three novel benzanthrone derivatives: Experimental and theoretical estimation of dipole moments, J. Quant. Spectrosc. Radiat. Transfer 112 (3) (2011) 448–456, https://doi.org/10.1016/j. jqsrt.2010.09.00.
  24. Mathapati.G. B, Ingalgondi.P.K, Patil.O, Basavaraj.S, Hanagodimath.S.M, Estimation of ground and excited state dipole moments of newly synthesized coumarin molecule, Int. J. Scient. Res. Phys. Appl. Sci. 5 (2018) 1061–1065.
  25. Mathapati.G.B, Patil.O, Basavaraj.S, Gounalli.S, Hanagodimat.S.M, Estimation of ground and excited state dipole moments of newly synthesized coumarin molecule by Solvatochromic shift method and Gaussian software, Int. J. sci. Res. Phys. Appl. Sci. 7 (2019) 38–43, https://doi.org/10.26438/ijsrpas/ v7i2.3843.
  26. Kulkarni MV, Kulkarni GM, Lin CH, Sun CM (2006) Recent advances in coumarins and 1-azacoumarins as versatile biody namic agents. Curr Med Chem 13:2795–2818.
  27. Patil O, Ingalagondi PK, Hanagodimath SM (2021) Estimation of dipole moments of new coumarin dye by experimental and theoretical methods. Macromol Symp 400:2100015. https:// doi. org/10.1002/masy.202100015.
  28. Lipert.E, Dipole moment and electronic structure of excited molecules, Z. Naturforsch 10 (1955) 541–546.
  29. Mataga.N, Kaifu.Y, Koizumi.M, The solvent effect on fluorescence spectrum, change of solute-solvent interaction during the lifetime of excited solute molecule, BCSJ 28(9) (1955)690https://doi.org/10.1246/bcsj.28.690.
  30. Bakshiev.N.G, Solvent dielectric relaxation effects, Optical Spectroscopy” 13 (1962) 507–530.
  31. Bilot.L, Kawski.A, Zur theorie des einflusses von Lösungsmitteln auf die elektronenspektren der moleküle, Zeitschrift für Naturforschung A 17 (7) (1962) 621–627.
  32. Bilot.L,Kawski.A,Der Einfluß des Lösungsmittels auf die Elektronenspektren lumineszierender Moleküle, Z. Naturforsch 18A (1963) 10–15.
  33. Pourtabrizi.M, Shahtahmassebi.N, Kompany.A, Sharifi.S, Dipole moment of excited and ground state of Auramine O doped nano-droplet, Opt. Quant. Electron. 49 (9) (2017) 291, https://doi.org/10.1007/s11082-017-1124-2.
  34. Reichardt.C, Welton.T, Solvents and solvent effects in organic chemistry, John Wiley & Sons, 2011.
  35. Ravi.M, Soujanya.T, Samanta.A, Radhakrishnan.T.P, Excited-state dipole moments of some Coumarin dyes from a solvatochromic method using the solvent polarity parameter, ENT, J. Chem. Soc., Faraday Trans. 91 (17) (1995) 2739–2742.
  36. Reichardt.C, Solvatochromic dyes as solvent polarity indicators, Chemical reviews 94 (8) (1994) 2319–2358..
  37. Suppan.P, Excited-state dipole moments from absorption/fluorescence solvatochromic ratios, Chem. Phys. Lett. 94 (3) (1983) 272–275, https://doi. org/10.1016/0009-2614(83)87086-9.
  38. Edward.J.T, Molecular volumes and the Stokes-Einstein equation, J. Chem. Educ. 47 (4) (1970) 261, https://doi.org/10.1021/ed047p261.
  39. Kumar.N, Paramasivam.M, Kumar.J, Gusain.A, Hota.P.K, Tuning of optical properties of p-phenyl ethenyl-E-furans: a solvatochromism and density functional theory, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 206 (2019) 396–404, https://doi.org/10.1016/j.saa.2018.08.032.
  40. Desai.V.R, Hanagodimath.S.M, Basanagouda.M, Kadadevarmath.J.S, Thipperudrappa.J, Sidarai.A.H, Spectroscopic studies on newly synthesized 5- (2-hydroxy-5-methoxy-phenyl)-2-phenyl-2H-pyridazin-3-one molecule, J. Mol. Liq. 225 (2017) 613–620, https://doi.org/10.1016/j.molliq.2016.11.080.
  41. Kumari.R, Varghese.A, George.L, Synthesis, crystal structure and photophysical properties of (E)-4-(4-(2-hydroxybenzylideneamino) benzyl) oxazolidin-2-one, J. Lumin. 179 (2016) 518–526.
  42. Patil.S.N, Sanningannavar.F.M, Navati.B.S, Patil.N.R, Kusanur.R.A, R.M.Melavanki, Spectroscopic properties and estimation of ground and excited state dipole moments of biologically active fluorescent molecule from absorption and emission spectra 4 (1) (2014) 11.
  43. Sharifi.S, Salavatovna.S.G, Azarpour.A, Rakhshanizadeh.F, Zohuri.G, Sharifmoghadam.M.R, Optical properties of methyl orange-doped droplet and photodynamic therapy of Staphylococcus aureus, J. Fluoresc. 29 (6) (2019) 1331–1341, https://doi.org/10.1007/s10895-019-02459-0.
  44. Desai.V.R, Hanagodimath.S.M, Basanagouda.M, Kadadevarmath.J.S, Sidarai.A.H, Solvent effects on the electronic absorption and fluorescence spectra of HNP: estimation of ground and excited state dipole moments, J. Fluoresc. 26 (4) (2016) 1391–1400, https://doi.org/10.1007/s10895-016-1830-3.
  45. Pujar.G.H, Wari.M.N, Steffi.B, Varsha.H, Kavita.B, Panicker.Y.C, Santhosh.C, Ajeetkumar.P, Inamdar.S.R, A combined experimental and computational investigation of solvatochromism of nonpolar laser dyes: Evaluation of ground and singlet excited-state dipole moments, J. Mol. Liq. 244 (2017) 453–463, https://doi.org/10.1016/j.molliq.2017.08.078.
  46. Siddlingeshwar.B, Hanagodimath.S.H, Kirilova.E.M, Kirilov.G.K, Photophysical characteristics of three novel benzanthrone derivatives: Experimental and theoretical estimation of dipole moments, J. Quant. Spectrosc. Radiat. Transfer 112 (3) (2011) 448–456, https://doi.org/10.1016/j. jqsrt.2010.09.00.
  47. Mathapati.G.B, Ingalgondi.P.K, Patil.O, Basavaraj.S, Hanagodimath.S.M, Estimation of ground and excited state dipole moments of newly synthesized coumarin molecule, Int. J. Scient. Res. Phys. Appl. Sci. 5 (2018) 1061–1065.
  48. Mathapati.G.B, Ingalgondi.P.K, Patil.O, Basavaraj.S, Hanagodimath.S.M, Estimation of ground and excited state dipole moments of newly synthesized coumarin molecule by Solvatochromic shift method and Gaussian software, Int.J.sci.Res.Phys Appl.Sci.7(2019) 38–43, https: //doi.org /10.26438 /ijsrpas / v7i2. 3843.
  49. Sidir.Y.G, The solvatochromism, electronic structure, electric dipole moments and DFT calculations of benzoic acid liquid crystals, Liq. Cryst. 47 (10) (2020) 1435–1451, https://doi.org/10.1080/02678292.2020.1733685.
  50. Pandey.N, Tewari.N, Pant.S, Mehata.M.S, Solvatochromism and estimation of ground and excited state dipole moments of 6-aminoquinoline, Spectrochim.